If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x-2304=0
a = 1; b = 5; c = -2304;
Δ = b2-4ac
Δ = 52-4·1·(-2304)
Δ = 9241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{9241}}{2*1}=\frac{-5-\sqrt{9241}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{9241}}{2*1}=\frac{-5+\sqrt{9241}}{2} $
| x-8-3=-10.3 | | 4x-71=-6+59 | | -9+6(x+3)=27 | | 20/0.12m=80 | | 10(x-1)=-2x+134 | | |6x|+12=36 | | a/10+44=2a | | X^2+-2x-x^2+9-8=0 | | X-7+y=90 | | -8y+1=6 | | 3+5m=2m+30 | | 2y-7+5y=28 | | 4t-5=30-t | | -2f-6=7f+24 | | 9(2x-5)=55 | | X^2+-2x-x2+9-8=0 | | -28=-7/3w | | 5+3m=2m+30 | | X^4+-2x+1=0 | | 5+v/3=-16 | | -10+7x=35 | | 3u(u+2)(u+8)=0 | | 8x+195=7 | | 58=45+y/9 | | 60=-5(w+7) | | 60x+1,000=5,000 | | 3(2)+1.5y=30 | | −2|−4x+5|−2=−12 | | 4(t-13)=80 | | 3(5)+1.5y=30 | | (50-x)*(30-x)=1125 | | 22/p=8/55 |